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SUMMARY 

Several techniques for experimental determination of floating point precision in practical computations 
are examined, and applied to linear algebra algorithms. These techniques are simple enough to be directly 
applicable to existing production codes, requiring a very limited amount of software on many machines, 
and yet they yield interesting information on the numerical precision of a computation. 

Our choice of linear algebra algorithms includes a direct solver (namely the MA32 program from the 
Harwell Library) and several variants of preconditioned conjugate gradients (the methods DIAG, INV, 
MINV and POL of Reference 1). The results may be of interest as method selection criteria, and thus 
complement Mflop performance data available from several sources. 

KEY WORDS Floating Point Arithmetic Rounding Errors Accuracy Linear Algebra 

1. INTRODUCTION 

The evolution ofcomputers large in both speed and memory size now makes it practical to perform 
numerical computations that exceed 10” floating point operations. In standard practice, 
programs are being ‘stretched’ to cover finer and finer discretized models, with little consideration 
given to their limitations in terms of arithmetic precision. 

However, the basic floating point precision of the machines has not varied much in recent years, 
since it is generally felt that the speed issue is still the most important. Most of the effort has been 
towards a standardization of floating point formats and the construction of high precision 
arithmetic, which is not generally available and incurs high performance penalties.’ Our present 
view is that the systematic use of some easy-to-use precision evaluation tools can help at both 

Based on an invited lecture. 
* Computations performed on the CCVR equipment 
‘I. Duff was at INRIA on leave from Harwell. 
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algorithm design and coding stage 5, and when selecting an algorithm for a particular application. 
This implies being able to apply the method on production codes with little, if any, programming 
cost and to analyse the results. 

The introduction of vector computers with large memories, especially those with 32-bit floating 
point capabilities, brings us closer to the limit where precision consciousness may become a major 
issue. Moreover, this class of machine naturally comes with powerful restructuring and optimizing 
compilers which perform some transformations that can potentially affect the floating point 
precision of a result.3q4 Here too we feel that a properly instrumented approach can help to cope 
with the issue. 

2. A MODEL O F  FLOATING POINT ARITHMETIC 

2.1. Basic notions 

The most difficult aspect is to have a model that can be precise enough to analyse the phenomena, 
yet abstract enough to permit meaningful study of whole algorithms. This question is not totally 
identical to the one of making floating point representation characteristics available to high-level 
language codes. In the latter case, one would be seeking to adapt at run time the algorithms to 
exploit the full precision of the computer. In the former case we want to assess how successful the 
algorithm is, and how hard the problem is. 

The aim of normalized floating point representation is to bound the admissible relative error on 
arithmetic computation, under the constraint that the operands and results are neither in the 
overflow range, nor in the underflow range. If  this is true, one has* 

where U,,, is a machine-dependent constant, the muximum relutiue error, whose relation with the 
number representation is discussed in detail in References 5-7. 

The main problem in analysing an algorithm’s behaviour is that this relation introduces an 
auxiliary variable dopnum per operation in the computation. Setting nops to the number of actual 
floating point operations, the actual result is thus a mathematical function of the data D and the set 
of individual relative errors (6,, . . . , 6nops):t 

(Ri = F( (4 (2) 
= .Fd(va1,(D), (6, ,  . . . , L,,,,)), 

under the constraint 

ISj l  < u,,,. 
(In the above formulae we have made use of the notation: program’s floating point data, D; data 
value in the field 2, val,(D); floating point result expressed in d, ,Fa.) 

*Some machines may exhibit deviations from this model, e.g. the Cray X-MP 
‘Since we have not excluded here tests depending on floating point quantities, this amounts to saying that the program’s 
output is a function of its inputs D. which may be highly non-differcntiable. 
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On the other hand, the exact result is expressed as follows: 
A? = B ( D )  

= P6(val,(D), (0,. . . , O ) ) .  
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(3) 

2.2. On the influence of vectorization techniques 

The vectorization techniques are ,aimed at exploiting the existing potential parallelism in 
programs so as to obtain significant speed-ups on pipelined machines and more specifically 
vector computers. They can be classified into two very broad categories: program flow and 
algebraic related transformations. 

Program flow. These techniques are aimed at restructuring the program, but do not require any 
knowledge of the properties of the basic operations, besides the fact that each operator jop( 
defines a pure function from its operands to its results: res c lopl (ol ,  02). This implies that the 
exact initial sequence of ‘atomic’ operations and results are produced on the binary representation 
of each partial result, thereby ensuring identical numerical properties. 

These transformations are applied either source to source, in an appropriate high level 
language, or in the process of translating from such a source language to machine code. In both 
cases, we emphasize that the above statement is exact if the final implementation of floating 
point operation is identical when the machine code is generated. In particular, it must be true 
that scalar and vector floating point operations are exactly identical, that no improvements, such 
as keeping extra mantissa bits for register quantities, floating point operator strength reduction 
etc., are used. 

Among these transformations, the most notable are loop splitting, blocking, reordering, 
alignment and distribution; replacement of IF by masks, or scatterlgather based constructs. A 
detailed description of these transformations can be found in References 4, 8 and 9. 

When dealing with conditionals, some of these techniques can nevertheless produce additional 
intermediate floating point results-possibly invalid-which will not participate in the final 
results, but which must not produce interrupts when computed. Since the final result will not 
be affected, we do not have to deal with them here, other than to mention that the underflow 
and overflow diagnostics that may ensue should be ignored,* unless they really abort the 
computation. In such a case, we would be much better off if the hardware returned NaNs, as 
defined in the IEEE standard” and is capable of handling operations between NaNs. If 
restructuring transformations are well designed, the final results would only involve well formed 
legal floating point numbers, i.e. non-NaN. 

Algebraic. The techniques involved here make use of the algebraic properties of the arithmetic 
operators. The simplest use only the commutativity and associativity of addition and multipli- 
cation in the reals. The more sophisticated make use of thefield properties of the reals. Of course, 
such properties do not hold in floating point arithmetic, leading to modifications of the arithmetic 
behaviour of programs. Among these operations, we find 

(a) tree-height reduction of general expressions 
(b) reduction parallelizing by tree-height reduction for C;= x i  and n;= xi 

* The adequate hardware and software features should really permit inhibition of these interrupts. 

invalid result or unavailable data. 
NaNs are symbolic indicators encoded in the floating point format, meaning that the floating point item represents an 
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(c) recurrence solving, for instance by odd-even reduction/elimination 
(d) floating point operator strength reduction. 

Details can be found in References 11-14. 

3. DETERMINING THE PRECISION OF A COMPUTATION 

Starting from formula (l), there are several measures of error we are interested in: 

1. worst case error, which corresponds to: 

2. statistical error estimate 
3. sensitivities of errors on individual operations. 

Worst case estimates have been widely used in connection with linear algebraic algorithms, and a 
systematic analytic study of numerical precision by Wilkinson and others has been most 
benefi~ia1.I~ However, they tend to overestimate errors, and their application requires a thorough 
mathematical analysis, especially if realistic estimates are sought (cf. section 5.2). 

As a reference in making these estimates, we can use the condition of the problem, which is 
generally taken to be the sensitivity of the result to errors in the problem data: 

A sound requirement for a stable algorithm would be that the numerical error be no greater than 
the problem’s condition. 

3.1. Perturbation techniques 

In order both to avoid the analytic difficulties, and to seek a statistically relevent error estimate, 
these methods consider that the 6, are independent random variables, distributed according to a 
known distribution with zero mean, and postulate that the results will also share a known 
distribution. From the result distribution’s variance the error estimate is then derived. These 
methods have been advocated and experimented or by Laporte and Vignes.16 

To be more specific, the probability measure R is constructed by assigning equal probabilities to 
all computations in a sequence. The di(o) are supposed to satisfy 

p(di) = di(w) dQ = 0, s 
P 

var(d,)= [S,(o)]’dR, J 
dev (Si) = [di(o)]’ dR JJ 

(7) 

= t u,,,. (9) 
Here t is a proportionality constant determined from the operation error distribution. This model 
leads to the following formulae: 
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Figure 1. Error distribution for selected evaluations 

var[NQ)I = (F"ldval&% ( d ~ ( a ) , . . . , ~ n o p ~ ( a ) ) ) -  ECR(Q)I)2dQ, (1 1) 

dev CR(Q)I = (ga(val,(D), (61 (a), . *  * 9 d n o p s ( a ) ) )  - ECR(0)I)' dQ. (12) 

J 
Js 

and the error is estimated by f - l  dev [ R ( Q ) ] .  Here f is determined from the result distribution.* 
There remain two difficulties with this approach, the first one being that in any real computation, 
all the di would be determined deterministically, the second being that the hypotheses made on the 
error distribution are far from satisfactory. On this last issue one may find a precise discussion in 
Reference 17, as well as some hints on the effect of some arithmetic sequences with uniform error 
distribution, obtained by random perturbations in Figure 1. 

4. APPLICATION TO ITERATIVE COMPUTATIONAL ALGORITHMS 

To cope with the first issue, one simply performs a series of computations, explicitly perturbing the 
arithmetic so as to ensure the hypothesis on the individual errors, but it must be noted that the 
error distribution on a typical result is very far from known, as can be seen in Figure 1. 

4.1. Sensitivity analysis technique 

the expression 
To describe very briefly this method, introduced by Miller,18.'9 we start by formally linearizing 

*For the )(AX experiments shown below, we have imposed 5 % 1000 and taken ?= 1. For the Cray experiments, 
5 ~ 2 a n d < = l .  
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max (&,(D, 0)-(. . . , S , ) ) ,  
16,l d u... 

If we suppose that we are handling a fragment of straight-line code, or more generally a program in 
which tests do not depend in any way on floating point data, we can use the following set of 
relations to compute such derivatives effectively. To describe these relations, it is convenient to 
introduce the following notation for the linearized error of an expression A involving the error 
variables (6a(l ), . . . , a a ( k ) ) ,  making the expression A and the set of error variables apparent: 

The linearized error of an expression is then computed from its operands, introducing a new* 
error variable S,,, 

A = B + C * @ ( A )  = ( B  + C)6, + @(B)  + @(C), 

A = B - C*@(A)  = ( B  - C)6, + @(B) - @(C): 

A = B*C*@(A)  = (B*C)6,+ C*@(B) + B*@(C) ,  

C*@(B) - B*@(C) 
C2 

A = B + C * @ ( A ) = ( B  t C)6, + 

In the case of tests depending on floating point data, the function € is in general not differentiable 
and the whole approach fails.+ 

4.2.  Tools used in this study 

Two tools are used in this study: the first, FLOP2, runs on a Cray under CFT and is designed to 
handle whole production grade programs; the other, FLOPV, runs under UNIX and is designed to 
enable the user to redefine fully the floating point semantics. A more detailed description will be 
made available in Reference 20; the source codes are available from the auth0rs.r 

Flop 2. This tool intercepts all floating point computations in selected program units by making 
use of a compiler option of the Cray CFT FORTRAN compiler. This is completely independent of 

* i.e. unique for each operation in the program 
+ I t  is still possible to use the method, ignoring the tests, to obtain an estimate of rounding errors for a frozen sequence of 
branches. Indeed we shall just d o  so for pivot selection strategies in the sequel. 

By electronic mail: lich (a inria. ARPA,. . . ! mcvax! inria! lich 
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vectorization options, which means that vectorized and possibly restructured code is intercepted 
'as is'. It is of course possible to inhibit the effect of vectorization so as to compare with a less 
restructured version. 

The precision assessment capabilities are as follows: 

(a) rounding and truncation of the floating point results at any mantissa length shorter than 48 
bits 

(b) random perturbation of the floating point results at any mantissa length shorter than 48 bits. 

Both of these operations are performed on the full precision floating point result, which is obtained 
by standard Cray floating point operations.21 The mantissa length and processing option can be 
varied at run time. To make full use of the random perturbation technique, the user has to make a 
series of runs and compute the standard deviations. 

FLOPV. In this case we have provided a Pascal environment in which the user can fully redefine 
the floating point semantics. This is done by the translation of the original Pascal program, so as to 
use a user-defined type newreal, which redefines the standard real type. The set of Pascal standard 
arithmetic functions is supported, as well as the full Pascal syntax. The floating point semantics are 
then simply defined by a user-written package, containing the realizations of our functions. It must 
be noted that the implementation of such packages in object-based languages permiting the 
overloading of operators makes the implementation of such a package most convenient.22 

In these tests we have made use of two semantics for floating point operations: 

(i) random perturbation after 56 mantissa bits 
(ii) simplified sensitivity analysis. 

To obtain this simplified model, we simply overestimate @(A):  

d Y ( A ) >  

and use the following set of rules to compute the Y(. ) :  

A = B + C=R(A) = IB + CI u,,, + Y ( B )  + Y(C),  

A = B - C * Y ( A )  = IB - CI u,,, + Y ( B )  + Y ( C ) ,  

A = B * C * Y ( A )  =IB*CIU,, ,+C*Y(B)+B*Y(C),  

C*Y(B)  + B*Y(C)  
C2 

A = B t C * Y ( A )  = IB t CI u,,, + 

5. METHOD VALIDATION ON TEST PROBLEMS 

The following set of tests is intended to validate our approach and show its relevance on test 
problems. Most of the information is obtained by comparing the outcome of the random 
perturbation and the simplified sensitivity (model) methods. For each test result given below, we 
indicate the test software used (FLOP2/FLOPV), the value of U,,,, and the method 
(Round/Trunc/R and P/Model). For the model method the results come out in the form of a floating 
point number whose mantissa shows only valid digits. When none is estimated valid, we show the 
result in the form x'xxxxe & xx(nn) which means that the estimated error is 10"" times greater than 
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Table I. Results of Newton form interpolation 

Model Rand P (Standard 
deviation) 

Interpo- 
lation error 

Uniformly distributed interpolation points 

0.622 19455 l463E1 
2.10011074E - 1 
1.873294E - 1 

6.22194551463784e + 00 
2.1001 1073912721e - 01 
1.87329439769213e - 01 

Chebyshev interpolation points 

0.40969E - 1 4.09686104143964e - 02 
2.13181015458E- 1 2.13181015458284e - 01 
0~687007101873E - 1 6.87007101872744e - 02 

9.9e - 12 
2.9e - 12 
4.3e - 10 

6.3e - 10 
9.9e - 15 
3.4e - 15 

- 0'62E1 
2.8E - 3 

- 1'2E - 1 

1.6E - 3 
- 3.3E - 4 
- 1.2E - 3 

the result. For the Rand P method we show the standard deviation as a measure of the estimated 
error. Our set of test problems contains: 

(i) polynomial interpolation 
(ii) Gaussian elimination 

(iii) conjugate gradient. 

5.1.  Polynomial interpolation 

Our test interpolates the function (1 + 25x2)-' on the segment [ - 1, + 11 using Chebyshev 
or uniformly spaced interpolation points. The Newton form is used in the c ~ m p u t a t i o n . ~ ~  The 
results are shown in Table I. Both methods indicate that the floating point error varies both 
with the choice of interpolation point spacing and with the point where the result is evaluated. 
However they are coherent as they give the same relative information. For the points where the 
interpolation (method) error is small, computation error does become an interesting issue. 

5.2. Gaussian elimination 

We have tested the Gaussian elimination method with the following pivoting strategies: 

(a) no pivoting 
(b) column pivoting using the maximum element in absolute value 
(c) column threshold pivoting, using the same heuristic as in the MA32 frontal code from the 

Harwell library. Namely, the next row i is selected if 

I a ( i , i )3~maxla( j , i ) l ;  

the parameter cr(0 < a < 1 )  is used to set the threshold 
(d) full pivoting using the maximum element in absolute value. 

121 

Our test problems are as follows: 

1. Hilbert matrix of order n. 
2. Van der Monde matrix of order n with cli = (n + i + l /n  + 1). 
3. Matrix M-A:15 
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- 1 1 ... 0 0 
- 1  - 1  l . . .  0 0 

- 1  - 1  . . .  1 0 
- 1  - 1  . . .  - 1  1 
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4. Matrix M-B:24 

5. Matrix M-C:25 

1 - 1  - 2 k  0 
0 1  k - k  
0 - 1  k +  1 - ( k +  1)  
0 0  0 k 

1 0  - 7  0 

[ - 3  

2 

6) .  5 - 1  5 

6. Matrix M-D: 

MDi,i = n ,  

i - j  MD. . = ~ 

'*' i + j + 1 '  
for i f j 

The results of our models can be compared with the estimates from Wilkinson's backward analysis 
t e ~ h n i q u e . ' ~ ~ ~ ~ ~ ~ ~  Solving the system A x  = b by the Gauss method, the computed solution 2 
satisfies exactly (A + E)P = b, where the perturbation matrix E is bounded by 

with 

where a$) is the element in row i, column j at step k of elimination. If we set 

r = II E II o0 II A - '  Ii 
then, provided r < 1 and a total pivoting strategy is used, 

We give below the computed values of r ,  taking for U,,, the value corresponding to full precision on 
DEC/VAX namely 2-57 = 6.7 x We also use the classical notation for the condition 
number of A:K,(A) = I1 A I1 a, 11 A -  11 m. 

Test with matrix M - A .  This matrix of dimension n has I ,  and I ,  condition number n 2 " - l .  
For n = 20, both model and random perturbation techniques indicate a degradation in the 
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Table 11. Results of Gaussian elimination for matrix M-A, n = 20 

No interchange for pivoting 
Rand P (Standard Model Full precision 

deviation) 

x [  11 1~00000000000004 (1.99e - 14) 1 ~000000000000000 1 ~000000000000000 
x [ 101 1~00000000000209 (5.87e - 12) 1 ~000000000000 1 ~000000000000000 
x[20] 2~00000000213507 (5.96e - 09) 2~000000000 2~000000000000000 

Table 111. Results of Gaussian elimination for matrix M-B 

No interchange for pivoting 
Rand P (Standard Model Full precision 

deviation) 

5.760003025177282e - 01 (2.14) 1.0e + OO(0) 0.997656464576721 
1.42400000379421e + 00 (2.14) 1.0e + OO(0) 1.002343 53 542328 
9.9999995760001 le  - 01 (2.14e - 07) 1 ~0000000EO 0.999999999765646 
2~0000002000000 1 e + 00 (3.87e - 14) 2~000000200000000EO 2~00000020000000 

Table VI. Results of Gaussian elimination with matrix M-C 

Model Full precision Rand P 

N o  interchange f o r  pivoting 

- 3.9e - 16(2) - 3.88578058618805e - 16 - 1.00073282993663e - 13 

1 ~00000000000000 1 ~00000000000000 9.99999999999996e - 01 
- 1 ~000000000000 - 1~00000000000000 - 1 ~000000000000 14 

Partial pivoting 

0 0~00000000000000 1.00286445814391e - 14 
- 1 ~00000000000000 - 1 ~00000000000000 - 9.99999999999996e - 01 

1 ~000000000000000 1 ~00000000000000 9.99999999999999e - 01 

Tota l  pivoting 

-4.4e- 17(1) - 4.44089209850063e - 17 - 1~72251102270591e - 14 
- 1 ~00000000000000 - 1 ~00000000000000 - 1~00000000000003 

1 ~000000000000000 1 ~00000000000000 1 ~00000000000000 

(Standard 
deviation) 

(4.61e - 13) 
(9.65e - 15) 
(9.65e - 15) 

(159e - 14) 
(3.41e - 14) 
(1.02e - 14) 

(2.79e - 14) 
(3.98e - 14) 
(1.20e - 14) 

- 

result’s precision, as is shown* in Table 11, whereas the exact solution is x1 = x l 0  = 1.0; x20 = 2.0. 
The a priori estimate is r = 8.9 x In this case, both methods are coherent; the full precision 
result shows that they are both exaggerating the error. 

Test with matrix M-B. This set of matrices is designed to have a large 1, condition number, 
8k2 + 6k + 1, that goes undetected by the Linpack estimator embodied by the SGECO routine. 
Our test shows that the modelling method shows the lack of estimated precision before the 

* We will show here only a few of the result’s component together with the precision estimates, more extensive results 
will appear in Reference 20. 



AN EXPERIMENT WITH ARITHMETIC PRECISION 1087 

Table V. Results of Gaussian elimination with matrix M-D, n = 20 

Model 
No interchange for pivoting 

Full precision Rand P (Standard 
deviation) 

x [ 11 1~00000000000000 1~00000000000000 1~00000000000002 (1.49e - 14) 
x [ lo] 1~00000000000000 1~00000000000000 9.99999999999996e - 01 (2.77e - 14) 
x [20] 2~00000000000000 2~00000000000000 2~00000000000002 (3.86e - 14) 

Table VI. Results of Gaussian elimination with the Hilbert matrix, n = 8 

Model Full precision Rand P (Standard 
deviation) 

N o  interchange for  pivoting 

x[l] 1.0e + OO(5)  1~00000000005318 
x[4] 1.0e + OO(4) 9.99999929467760e - 01 
x[5] 2.0e + OO(3) 2~00000016657510 
x[8] 2.0e + OO(1) 1.99999996258034 

Column pivoting 

x[1] 1.0e + OO(5) 9.99999999803623e - 01 
x[4] 1.0e + OO(5) 1~00000026078078 
x[5] 2.0e + OO(4) 1.99999938555962 
x[8] 2.0e + OO(2) 2~00000013700937 

Total pivoting 

x[l] 1.0e + OO(4) 999999999895900e - 01 
x[4] 1.0e + OO(4) 1~00000014331820 
x[5] 2.0e + OO(3) 1.99999966032516 
x[8] 2.0e + OO(3) 2.00000007659342 

9.99999978821015e - 01 
1.00002682549518 
1.999937 1521 938 1 
2.00001 390746351 

1~0000000 1 023833 
9.99989057077121e - 01 
2.00002453764322 
1.999995 10679122 

9.99999989005349e - 01 
1.00001 3397241 46 
1.99996906549938 
2.00000658881595 

(6.16e - 08) 
(8.30e - 05) 
( 1.96e - 04) 
(4.42e - 05) 

(1.4e - 07) 
(2.02e - 04) 
(4.79e - 04) 
(1.08e - 04) 

(6.79e - 08) 
(8.73e - 05) 
(2.04e - 04) 
(4.51e - 05) 

failure which occurs for k = 1.OE8. For k = 1.0E7 we obtain the results of Table 111 which is to 
becompared with theexact solution (1,1,1,2~0000002). Note that here r = 0.14, and r/l - r,  = 016. 

Test with matrix M-C.  This matrix has been constructed to demonstrate that pivoting can be 
necessary to ensure precision. Our test with the model method confirms this fact (Table IV), at least 
for the partial column pivoting (exact solution (0, - 1, l), r = 4 x lo-''). In this case both the 
modelling approach and the full precision show that total pivoting is certainly not justified, as it 
appears less precise. 

Test with matrix M-D. The tests with this diagonally dominant well conditioned matrix show 
that the modelling method gives very good worst case estimates that are not systematically 
exaggerated. In comparison with the other tests, they are thus interesting to appreciate the 
diagnostic capabilities of such a method (see Table V). The random perturbation technique 
performs satisfactorily too. Note that pivoting is not relevant in this case and that r = 2.8 x 
K , ( A )  = 2.6. 

Test with the Hilbert matrix. The Hilbert matrix is well known for its bad condition number. 
This fact is confirmed by the model method, as well as the quickly growing lack of precision on the 
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Table VII. Results of Gaussian elimination with the Van der Monde matrix, n = 10 

Model Full precision Rand P (Standard 
deviation) 

N o  intrrchunge,for pivoting 

x[l] 1.0e + 00(1 I )  
x[4] 1.0e + OO(9) 
x [5] 2.0e + OO(8) 
x[6] 1.9e-06(13) 
x[8] 2.0e + OO(5) 

Column pivoting 

x[l] 1.0e + OO(8) 
x[4] 1.0e + OO(7) 
x [5] 2.0e + OO(5) 
x[6] - -  1.3e-07(12) - 

x[8] 2.0e + OO(2) 

Total pivoting 

x[l] 1.0e +00(8) 
x[4] 1.0e + OO(7) 
x[5] 2.0e + OO(5) 
x[6] - 1.3e-07(12) 
x[8] 2.0e + OO(2) 

9.99999900346606e - 01 1~00000349807613 
1.0000027258741 1 9.99906683532958e - 01 
1.9999972 1092296 2.0000946 1643463 
1.89448236242643e - 06 - 6.36642631962269e - 05 
2.00000024663 102 1.99999187598520 

1 .OOOOOOO 1 3 57745 1~00000860118802 
9.99999740385768e - 01 
2~00000022695029 2.00025904077647 
1.27844755655186e - 07 
1,99999999017490 1.99997580451 875 

9.99751452865155e - 01 

- 1.79219475005296e - 04 

9.999998840761 19e - 01 
1~00000317866839 1.00 101 702733704 
I ,99999674480238 1.99895280591326 
2.2 130901 7549998e - 06 
2.00000028866 1 35 2.00009435845204 

9.99963509745179e - 01 

7.15804532045789e - 04 

(4.01e - 05) 
( 1.1 le  - 03) 
(1.14e-03) 
(7.73e - 04) 
(1.01e-04) 

(2.0 - 04) 
(5.47e - 03) 
(5.61e - 03) 
(3.81e - 03) 
(4.97e - 04) 

(6.82e - 05) 
(1.89e - 03) 

(1.32e - 03) 
(1.74e - 04) 

(1.94-03) 

successive reduced matrices obtained during the forward elimination. However, this estimate 
shows that the total pivoting variant should behave much better than the variant without row or 
column interchange. This is not confirmed by the experiment, as evidenced in Table VI, and 
furthermore some worst case error estimates seem grossly over-estimated by this method. The 
random perturbation technique gives very precise information in this case and is thus preferable. 
We give the results for n = 8(r  = 0.023, K , ( A )  = 1.17 x lo", exact solution: x1 ,x4  = 1;x5,x8 = 2). 

Test with the Van der Monde matrix. The modelling method appears very pessimistic for 
small n but gives a clear warning before a sudden loss of precision which occurs for n = 12. The 
random perturbation method gives strikingly precise results here too. The results for n = 10 
appear in Table VII and show that Wilkinson's bound can be over-pessimistic indeed (here 
r = 15.15, t i , (A)  = 2.16 x lo", exact solution: x1 ,x4  = 1 ;  x 5  = 2; x6 = 0; x8  = 2). 

5.3. Conjugate gradient 

In this case our test matrix of order n is 

Our series of test using the modelling method shows that this method tends to overestimate 
arithmetic errors too much to be of diagnostic value. The apparent reason seems to be related to the 
extensive use of scalar products of nearly orthogonal quantities. The random permutation result is 
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Table VIII. Conjugate gradient: N = 20-updating strategy 

Model Full precision Rand P (Standard 
deviation) 

x[l] 2,0e+00(14) 2~00000000000000 2~00000000000030 
x[2] - 3.5e - 16(30) - 3.51932025188795e - 16 - 3.90450952819646e - 13 
x[3] 2.0e + 00( 14) 2~00000000000000 2~00000000000093 
x[4] - 6.4e - 16(29) - 6.44883452194378e - 16 - 7,62398965573755e - 13 
x [5] 2.0e + 00( 14) 2~00000000000000 2~00000000000 1 35 
x[6] - 8.7e - 16(29) - 8.72023807330091e - 16 - 1.03915940522642e - 12 
x [7] 2.0e + 00( 14) 2~00000000000000 2~00000000000 1 72 

(2.70e - 13) 
(5.90e - 13) 
(8.73e - 13) 
(1.13e - 12) 
(1.34e - 12) 
(1.58e - 12) 
(I.73e- 12) 

Table IX. Conjugate gradient: N = 20-recompute strategy 

Model Full precision Rand P (Standard 
deviation) 

x[1] 2.0e + OO(21) 2~00000000000000 1.99999999999994 (4.70 - 13) 
x[2] l.le - 15(37) 1.14491749414469e - 15 3.072441 60668848e - 13 (1.38e - 12) 
x [3] 2.0e + OO(22) 2~00000000000000 2~00000000000005 (2.49e - 12) 
x[4] 1.4e - 15(37) 1.37541887601511e - 15 2.437661 50927889e - 13 (2.30e - 12) 
x[5] 2.0e + OO(22) 2~00000000000000 2~00000000000050 (2.22e - 12) 
x[6] 1.7e - 15(37) 1.67932074496280e - 15 8.14745406560368e - 16 (2.25e - 12) 
x[7] 2.0e + OO(22) 2~00000000000000 2~00000000000067 (2.79e - 12) 

applicable in this context and gives precise results on our test problems. We give the results for 
n = 20 with two strategies for computing the residual:26 

1. Iteratively update the residual r(k) at iteration k with the formula: r(k): = r(k) - alpha* Ap 
( k  - 1) where p(k - 1 )  is the search direction at the previous step. 

2. Fully recompute r(k) for each iteration: r(k): = b(k) - Ax(k). 

The results after 20 iterations (Tables VIII and IX )indicate a slight superiority for the first method, 
which is confirmed by the random permutation method. We plan to further investigate the reason 
for this behaviour checking in particular for orthogonality conditions with the help of this method. 

6. APPLICATION TO DIRECT METHODS 

We have applied the round and truncation methods on the multifrontal code MA32 from the 
Harwell library. The results shown in Figure 2 show the precision obtained in the result, in 1, and 
1, norms, as the arithmetic precision is varied. We have not been able to produce any significant 
anomalies using a set of test problems devised by Duff. We have also tested for the influence of the 
parameter a controlling the threshold for partial pivoting in this code. The benefit of varying CI from 
0.01 to 0.1 is clearly illustrated in Table X. Varying from 0.1 to 0.99 appears not to be interesting. 

7. APPLICATION TO ITERATIVE METHODS 

We have run a series of tests on the algorithms DIAG, INV, MINV and POLY of consus et al.' 
Both truncation and rounding methods show that the most precise results are obtained with the 
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tronca t ed 
rounded 

number of b i t s  

Figure 2. Effect of variable precision on M A 3 2  

Table X. Cost of pivoting strategies in MA32: solution of a system of 
linear equations of order 441, truncated arithmetic 

5( CPU No. of ops Relative error ( L ,  norm) for several 
time ( s )  (internal loop) ,mantissa lengths 

36 bits 32 bits 28 bits 

0,001 0.199 196,312 1.8 x lo-' 3.1 x lo-' 5.4 x 
0.01 0.199 196,312 1.8 x lo-' 3.1 x lo-'  5.4 x 
0.1 0204 206,080 4.3 x lo-' ' 6.4 x lo-' 9.6 x lo-' 
0.99 0.704 921,599 5.8 x lo-' 1.5 x lo-' 5.6 x 

INV and MINV methods, and that the method POLY gives significantly less precise results. On 
the other hand, there is little variation in iteration counts as precision is varied, and almost none 
when the mantissa stays longer than 17 bits (see Figures 3 and 4). 

8. CONCLUSION 

We have used two methods to ascertain the precision of numerical software in practical situations. 
The worst case sensitivity technique appears overly pessimistic in many situations but still yield 
results comparable or better than 'by hand' mathematical analysis. It is also theoretically well 
founded. The random permutation technique of J. Vignes gives very accurate information in most 
cases, even when the other methods appear inadequate. Globally we find these methods useful in 
obtaining correct information on numerical precision, which we have often found very different 
from our intuition. 
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Figure 3. Effect of variable precision on conjugate gradient codes 
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